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Abstract:  Ground-level ozone is a dangerous pailuitar which the prediction of the
concentration could be of great importance. In gaper, we present and
compare three fuzzy models aiming the forecastinground-level ozone
concentration. The models apply Takagi-Sugeno.easpe LESFRI fuzzy
inference techniques and were generated using Niel2\ method of the
Matlab’s Fuzzy Logic ToolBox, respective the RBE®#ethod of the
SFMI toolbox. Although all of the methods provedte applicable the
model using LESFRI ensured the best results witlwanumber of rules.
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1. Introduction

The analysis and forecasting of air quality paramsetare important topics of
atmospheric and environmental research. In mailyeofpplications, data are generated
in the form of a time series. Therefore, time searalysis is a major task in forecasting
average o0zone concentrations, where one tests egdicis known or estimated
observations for past times using them as input the model to see how well the
output matches the known observations.

Ground-level ozone (§) is one of the air pollutants of most concern urdpe. It is
an irritating and reactive component in atmospltea¢ has negative impacts on human
health, climate, vegetation and materials [23].

Ground-level ozone is a highly reactive oxidant asdunique among pollutants
because it is not emitted directly into the air][20is a secondary pollutant that results
from complex chemical reactions in the atmosphémethe presence of the sun’s
ultraviolet radiation (RAD), oxygen () nitrogen dioxide (Ng), and volatile organic
compounds (VOCs) react in the atmosphere to formnezand nitric oxide (NO)
through the reactions given in (1) and (2)
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NO, +hv - NO+O , (1)

0,+0 - O,. (2)

With regards to the prediction of ;Qconcentrations, several studies have been
published. Sousa, Martins, Alvim-Ferraz, and PardR28] applied multiple linear
regression (MLR) and artificial neural networks (W8); Ozdemir, Demir, Altay,
Albayrak, and Bayat [21] used ANNs; Al-Alawi, AbdWahab, Bakheit [1] combined
principal component regression and ANNS; Pires, tidsyr Pereira and Alvim-Ferraz
[22] developed three different models an MLR basgdANN based and one based on
multi-gene genetic programming (MGP), from whicle tlast one (MGP) ensured the
best predictions.

Fuzzy systems have been used successfully for mwsepractical applications.
Kovacs and Kdoczy [18] developed a fuzzy rule intdaion (FRI) based model for
behaviour-based control structures; Johanyéak aréunhe [9] constructed fuzzy models
for the prediction of thermoplastic composites’ Imegical properties; Wong and
Gedeon [34] as well as Johanyak and Kovacs [13¢ldped FRI based systems for
prediction of petrophysical properties. Hladek, &S and Sitak [5] proposed a
hierarchical multi agent control system based da hased fuzzy system for pursuit-
evasion task. Despite their advantages and widdéicappity area fuzzy logic based
solutions for ozone concentration prediction haweheen published previously.

Therefore our research aimed the development aatysas of two types of fuzzy
systems one applying a traditional Takagi-Suge®) ierence method using a dense
rule base and another applying fuzzy rule intergiamta(FRI) based reasoning technique
using a sparse rule base. The results proved tpicalpility of the above mentioned
methods in this case as well.

The rest of this paper is organized as followsti8edl reviews briefly the applied
methods. Section Il introduces the experimentsdéi@a came from and the results of
the modelling. The conclusions are drawn in sedtibn

2. Fuzzy Modeling and Inference

A fuzzy rule based system describes usually a neati mapping between inputs and
outputs based on fuzzy set concept. One can assigatA a characteristic function
Xa:X »{0,1}, which can take only the 0 or 1 (crisp) numericalues in case of the
classical set concept (3) and values from a coatisunterval (usually [0,1] ) in case of
the fuzzy concept [35].

if xOA
XA:{l 3

0, otherwise

In fuzzy logic the mapping of crisp input$ to crisp outputsy* generally is solved
in three steps, which can be seen on Figure lremfe(x *, X,%,..., X,*) is the input,
y*=(y1*, ¥o*,..., Ym*) is the outputn is the number of input dimensions, amdis the
number of output dimensions.
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X*— P Fuzzification

v X

Inference engine

vY

Defuzzification P Y*

Figure 1. Block diagram of functioning of a fuzmjerbased system

Depending on the number of input and output lingriigariables (dimensions) one
can define four groups of fuzzy systems, i.e. rplétinput multiple-output (MIMO),
multiple-input single-output (MISO), single-inputultiple-output (SIMO), single-input
single-output (SISO). In the case of ozone conetiotis’ forecasting we used MISO
models. In the following subsections we review flgadhe methods and tools we used
for the generation of the three fuzzy models aimihg better prediction of ozone
concentration.

2.1.Takagi-Sugeno type fuzzy inference

The mapping of inputs to outputs in a fuzzy sysierdetermined by a set of “IF—
THEN?" rules of form

If XisA'thenYisB';i =1... R, (4)
where in case of a MISO syste¥ = (X, Xp, ..., X,) consists of a set of input

variablesY is the output variable, ariRlis the number of rules [32]. The fuzzy sats
(A{, A'Z Ah‘) andB' are the antecedent and consequent parts of the fules.

The Takagi—Sugeno type fuzzy system [29] also dalfanctional fuzzy system”,
uses a function' instead of a linguistic term

If XisA'theny'isg';i =1,...,R, (5)

where the consequengsf(X). When the valueg' are constants the system is called
zero order Takagi-Sugeno system. The crisp outptheofuzzy system is determined
by
R
2 WG
— i=l
y=-5—-: (6)
Wi
i=1
wherew; is the firing strength of thé&h rule. Li Xin Wang [33] proved that any
continuous function can be approximated by zer@ofékagi-Sugeno systems.
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2.2 ANFIS, Adaptive-Network-Fuzzy Inference System

The Matlab’s ANFIS software generates a Takagi-8agepe fuzzy system from
sample data using an adaptive neural network [6]. adlaptive network can be
considered in some sense as the generalizatioewhhnetworks and fuzzy systems
[6][7]. The typical structure of an adaptive netwds shown in Figure 2. The network
consists of nodes connected by directed edgestypieal adaptive network does not
contain any feedback and it is organized in laydise inputs and outputs of the
adaptive network are denoted XiyandO;". The number of layers is. The number of
nodes in thek-th layer is denoted b¥(k). Figure 3. shows a simple example of an
adaptive network.

2.3. LESFRI

In many cases the dense rule base (e.g. Figuraetjanded by the classical
compositional fuzzy inference techniques contaites@e number of rules that increases
exponentially with the number of input dimensionsish fact also increases the
computational complexity and the storage demand.

This problem led to the development of fuzzy syste¢hat are able to produce the
output relaying only on a minimal set of rules. $htis not necessary to ensure a full
coverage of the antecedent space by rules andrsespde base with low complexity
can be applied (see Figurtha! A hivatkozasi forras nem talalhato.) .

The development of Fuzzy Rule Interpolation (FR§séd Inference Techniques
(FRITs) gives new methodology on the field for pieed applications due to the
reduced complexity and storage space demand asawelue to its ability to handle
cases when there are no rules that would deschibeexpected output for all the
possible inputs.

FRITs can be divided into two groups depending dwetiver they are producing the
estimated conclusion directly or they are interpptaan intermediate rule first.

Relevant members of the first group are among sthieg linear rule interpolation
(KH method) [15] proposed by Kdczy and Hirota, whis the first developed one, the
MACI (Tikk and Baranyi) [30], the FIVE [17] introded by Kovacs and Kéczy as well
as the interpolation method developed by Kovacs] [téat extended the fuzzy
interpolation to the general metric spaces.

1 L

X P 1 1 O
AN

X P #(1) #(L) - » O "

Figure 2. The layer structure of an adaptive netafd9]
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Figure 3. Simple example for an adaptive netwofq [1

The methods belonging to the second group follogv ¢bncepts laid down by the
generalized methodology (GM) defined by Baranyaktin [2]. Typical members of
this group are e.g. the technique family propose8dranyi et al. in [2], the ST method
suggested by Yan, Mizumoto and Qiao [31], the fiamsation based technique
published by Chen and Ko [4] as well as the teamsd.ESFRI [11], FRIPOC [12] and
VEIN [14] developed by Johanyak and Kovacs.

We chose LESFRI (LEast Squares based Fuzzy Rudepbiation) [11] for the task
of FRI based fuzzy inference. It was applied owiaghe good practical experiences
(e.g. [9]) in course of previous applications. s first step LESFRI interpolates a new
rule into the position of the observation. The taskolved in three phases. Firstly, the
antecedent membership functions are calculatedgusiie FEAT-LS (Fuzzy sEt
interpolATion based on method of Least Squaresyfiset interpolation method. Next,
one determines the position (reference pointshefdonsequent linguistic terms of the
new rule using an adapted version of the Shepaedpiolation [26]. Thirdly, the shapes
of the consequent sets are calculated using the satrinterpolation technique (FEAT-
LS) as in the first phase.

LESFRI determines the conclusion in its second s&pg the single rule reasoning
method SURE-LS (Single rUle REasoning based onrtéthod of Least Squares) that

Figure 4. Antecendent space of a dense rule base
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calculates the necessary modifications of the néde/s consequent sets based on the
dissimilarities between the rule antecedent anémsion sets.

2.3.1.FEAT-LS

The FEAT-LS method aims the determination of a Hieguistic term in a fuzzy
partition based on a supposed regularity betweerkttown sets of the partition. First
all linguistic terms are shifted horizontally intbe interpolation point and next, one
calculates the shape of the new set from the gweeld membership functiong\'(
Figure 5 right side).

H H
1 N 1
0.5 A ‘ A 0.5
X
O L L ‘ L L Il X O Il
0 2 4 6 8 10 12 14 0 12 14

Figure 5. Original partition and interpolation pairgx)

FEAT-LS targets the preservation of the charadiershape type of the partition (e.g.
trapezoidal on Figure 5) therefore it applies thethad of the weighted least squares for
the identification of the new set’s parameters. Waighting is related to the original
distance between the sets and the interpolationt.pbhe calculations are domecut
wise using only the-levels corresponding to the characteristic poaftthe partition’s
default shape type.

2.3.2.SURE-LS

The revision method SURE-LS (Single rUle REasoitiaged on the method of Least
Squares) is a special fuzzy inference techniquetttiees into consideration only one
rule for the determination of the conclusion. Thetimod is applicable when its
antecedent sets are in the same position as thervalisn sets in each antecedent
dimension and the heights (maximal membership Yad@i@ll involved fuzzy sets are

the same.
Lu
0.8 Ay y A
0.6 B
042 -
02! [l< 9P
VAR W . L
0 1 2 3
Figure 6. Lower (5 (A< , A)) and upper (I (A< , A)) fuzzy distance at the
level
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SURE-LS calculates the conclusion by modifyingdbasequent sets of the rule. This
modification is related to the similarity betwedre tantecedent linguistic terms and the
observation sets, which is measured independentlgaich input dimension by the
means of their fuzzy distance (see Figure 6) andgigregated by calculating the
average distance.

2.4.RBE-DSS

In course of the rule base generation one canviotieo different approaches. The
first one divides the task in two separate steps,the structure definition and the
parameter identification (e.g. Precup, Doboli ameitP[24]; or Botzheim, Hamori and
Kaoczy [3], or Skrjanc, BlaZiand Agamennoni [27]).

The second approach works incrementally by simattasly modifying the structure
and the parameters, i.e. introducing or eventualigninating rules and tuning the
parameters of the membership functions (e.g. Ja&laagd Kovacs [10]).

The Rule Base Extension with Default Set ShapesE(RBS) [10] starts with an
empty rule base and a set of training data poiimsngin form of coherent input and
output values. First the starting rule base ismaefiby determining the first two rules.
They aim the description of the minimum and maximaotput. One seeks the two
extreme output values and a representative datd fooi each of them. If several data
points correspond to an extreme value, one shalitisthe one that is closer to an
endpoint of the input domain.

Next, a tuning algorithm starts aiming the identtion of the parameters of the
initial fuzzy sets. This algorithm uses an iteratapproach adjusting each parameter in
several steps separately. The system is evaluateghdh iteration step for different
parameter values against a training data set angdahameter values ensuring the best
performance index are kept for the next iteration.

If the decreasing velocity of the performance indéxhe system is too slow, i.e. it
falls below a specified threshold after two cons$eeuterations a new rule is generated.
It is because the system tuning reached a locglatral minimum of the performance
index and the performance cannot ameliorate furtherthe applied parameter
identification algorithm. The new rule introducetddional tuning possibilities.

In order to create the new rule, one seeks forcHieulated data point, which is the
most differing one from its corresponding trainjmgint. The input and output values of
this training point will be the reference pointstbé antecedent and consequent sets of
the new rule.

3. Experimental data and modeling results

The air pollution data were collected in an urbiégm of Northern Portugal with traffic
influences situated in Oporto [22]. The site isigied on the left edge of the Douro
River, at an altitude of 90 m approximately. Thedst period was two weeks of July
2004, where high ©concentrations were measured and there was ninmigata.

In course of the experiments 10 characteristicseeweeasured: the hourly average
concentrations (in ug/fn of carbon monoxide (CO), nitrogen oxides (NO, Néhd
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NOXx) and @; hourly averages of air temperature (T), solaiat@wh (RAD), relative
humidity (RH) and wind speed (WS); the day of wéekV; the Q behavior is different
on weekdays and on weekend). All environmental andteorological inputs
corresponded to the same hour of the previous day.

Based on the results published in [22] we took iodmsideration in course of the
modeling only the most important factors that afé&RH, O; NO,, NO. We formed two
groups of the experimental data: one containing i28@surements for system training
purposes and one with 84 measurements for testimgopes. The test data were
selected randomly from the original sample.

The quality of a fuzzy model is measured using diopmance index that aggregates
the distances between the measured and calculatpdt@oints. One can choose from
several possible performance indices availabléénliterature (e.g. in [25]). We used
the root mean square of the error (RMSE) as pedooa index owing to its good
comprehensibility and comparability to the rangehef output linguistic variable.

3.1.Modeling results using ANFIS and Takagi-Sugeno infence

We created two fuzzy models using the ANFIS sofewdrhe first one (labeled as
03_Anfis_3S_Trimf_Corr.fis) was a zero ordered Tgkaugeno model having triangle
shaped membership functions and three fuzzy setaah dimension. We used the
hybrid training algorithm with three epochs. Figufe and Figure 8. present the
measured and calculated output points in caseedf#ining respective test data sets.

The second fuzzy system (labeled as O3_Anfis 5&fT@orr.fis) was a zero
ordered Takagi-Sugeno model having triangle shapethbership functions and five
fuzzy sets in each dimension. We used the hybaiahitig algorithm with five epochs.
Figure 9. and Figure 10. present the measuredandlated output points in case of the
train respective test data sets.

The performance of the systems was measured usngot mean square of the error
(RMSE). The numerical results are summarized in@aldn case of both systems one
can identify clearly a slightly overfitting of thmodels to the training data.

Training data: o FlS output - *

250

200+ G

150 v Q
¥

WaWa Vs ‘%f & W

0 a 40 EIJ EIII ‘IIII 121] I-|IJ IEH:I ‘IEEI EUU

Figure 7. Measured and calculated output pointsase of the first fuzzy system and
the training data set
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Table 1. System performance (RMSE) in case ofdh@rtg and testing data

1.2011

Training Test Number of
rules
03 Anfis_3S_Trimf_ Corr.fis 10.5101 95.0337 243
03 Anfis 5S Trimf Corr.fis 4.4400 105.9679 3125
03_2R_Reduced_01_640_00705/fis 8.0007 14.8703 66
Testing data : . FIS output - *
250 -
200 +
150 - *
- ’ + '*
RIS % j;* *:'3';
(=] - fw.ﬁe‘t Jﬁk {f m
et CRIY S ~*
5DD 2D tiD ED ED 1DID 1;0 1:10 1éD 1EIED QDID

Figure 8. Measured and calculated output pointsase of the first fuzzy system and the
testing data set
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Figure 9. Measured and calculated output pointsase of the second fuzzy system
and the training data set

Testing data - FIS output = *
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Figure 10. Measured and calculated output pointsase of the second fuzzy system
and the testing data set
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We also created a fuzzy model using the SFMI toolf®]. The selected model
identification method was RBE-DSS and we used LBSBRfuzzy inference in the
resulting sparse rule base. The system perform@I&SE) in case of the training data
set was between the results obtained in case ofwbeANFIS created systems (see
Table ). On the other hand, there was a much smalerfitting, i.e. this system
presented the best performance in case of thed&at Besides, the number of rules
necessary for the description of the relation betwthe input and output variables was
the smallest in the case of the third fuzzy systeéigure 11. and Figure 12. present the

measured and calculated output points in caseeofr#tin respective test data sets. The
numerical results are summarized in Table I.

°o  Measured
O Calculated

output

Figure 11. Measured and calculated output pointsdse of the third fuzzy system
and the training data set

200
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= m|

ED

.ﬂ&ﬁ@ H@oﬁ . mig%é@h %u%rﬁ
0 2EI 5EI EEI ?D ED

n
R

Figure 12. Measured and calculated output pointsdse of the third fuzzy system
and the testing data set

4. Conclusion

This paper presented the application of two difiereuzzy rule base generation
approaches in order to model the relation betwéen dnvironmental characteristics
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and ground level ozone concentration. The aim ofresearch was the creation of fuzzy
models that can be used in practice for the priediaif the ozone level.

In our case the fuzzy system applying a sparsebase and inference based on fuzzy
rule interpolation ensured the best results takitg consideration both the training and
testing data samples. This solution ensured slighttter performance than the
previously applied approaches published e.g. if [22
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