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Abstract: Ground-level ozone is a dangerous pollutant for which the prediction of the 
concentration could be of great importance. In this paper, we present and 
compare three fuzzy models aiming the forecasting of ground-level ozone 
concentration. The models apply Takagi-Sugeno, respective LESFRI fuzzy 
inference techniques and were generated using the ANFIS method of the 
Matlab’s Fuzzy Logic ToolBox, respective the RBE-DSS method of the 
SFMI toolbox. Although all of the methods proved to be applicable the 
model using LESFRI ensured the best results with a low number of rules. 
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1. Introduction 

The analysis and forecasting of air quality parameters are important topics of 
atmospheric and environmental research. In many of the applications, data are generated 
in the form of a time series. Therefore, time series analysis is a major task in forecasting 
average ozone concentrations, where one tests and predicts known or estimated 
observations for past times using them as input into the model to see how well the 
output matches the known observations. 

Ground-level ozone (O3) is one of the air pollutants of most concern in Europe. It is 
an irritating and reactive component in atmosphere that has negative impacts on human 
health, climate, vegetation and materials [23]. 

Ground-level ozone is a highly reactive oxidant and is unique among pollutants 
because it is not emitted directly into the air [20]. It is a secondary pollutant that results 
from complex chemical reactions in the atmosphere. In the presence of the sun’s 
ultraviolet radiation (RAD), oxygen (O2), nitrogen dioxide (NO2), and volatile organic 
compounds (VOCs) react in the atmosphere to form ozone and nitric oxide (NO) 
through the reactions given in (1) and (2) 
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   ONOhNO +→+ ν2  ,   (1) 

                  32 OOO →+ .      (2) 

With regards to the prediction of O3 concentrations, several studies have been 
published. Sousa, Martins, Alvim-Ferraz, and Pereira [28] applied multiple linear 
regression (MLR) and artificial neural networks (ANNs); Ozdemir, Demir, Altay, 
Albayrak, and Bayat [21] used ANNs; Al-Alawi, Abdul-Wahab, Bakheit [1] combined 
principal component regression and ANNs; Pires, Martins, Pereira and Alvim-Ferraz 
[22] developed three different models an MLR based, an ANN based and one based on 
multi-gene genetic programming (MGP), from which the last one (MGP) ensured the 
best predictions. 

Fuzzy systems have been used successfully for numerous practical applications. 
Kovács and Kóczy [18] developed a fuzzy rule interpolation (FRI) based model for 
behaviour-based control structures; Johanyák and Ádámné [9] constructed fuzzy models 
for the prediction of thermoplastic composites’ mechanical properties; Wong and 
Gedeon [34] as well as Johanyák and Kovács [13] developed FRI based systems for 
prediction of petrophysical properties. Hládek, Vaščák and Sinčák [5] proposed a 
hierarchical multi agent control system based on rule based fuzzy system for pursuit-
evasion task. Despite their advantages and wide applicability area fuzzy logic based 
solutions for ozone concentration prediction have not been published previously. 

Therefore our research aimed the development and analysis of two types of fuzzy 
systems one applying a traditional Takagi-Sugeno [29] inference method using a dense 
rule base and another applying fuzzy rule interpolation (FRI) based reasoning technique 
using a sparse rule base. The results proved the applicability of the above mentioned 
methods in this case as well. 

The rest of this paper is organized as follows. Section II reviews briefly the applied 
methods. Section III introduces the experiments the data came from and the results of 
the modelling. The conclusions are drawn in section IV. 

2. Fuzzy Modeling and Inference 

A fuzzy rule based system describes usually a nonlinear mapping between inputs and 
outputs based on fuzzy set concept. One can assign to set A a characteristic function 
xA:X→→→→{0,1},  which can take only the 0 or 1 (crisp) numerical values in case of the 
classical set concept (3) and values from a continuous interval (usually [0,1] ) in case of 
the fuzzy concept [35]. 

     


 ∈

=
otherwise

Axif
xA ,0

,1
    (3) 

In fuzzy logic the mapping of crisp inputs x*  to crisp outputs  y* generally is solved 
in three steps, which can be seen on  Figure 1. where x*=(x1*, x2*,…, xn*)  is the input,  
y*=(y1*, y2*,…, ym*)  is the output, n is the number of input dimensions, and m is the 
number of output dimensions.  
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Depending on the number of input and output linguistic variables (dimensions) one 
can define four groups of fuzzy systems, i.e. multiple-input multiple-output (MIMO), 
multiple-input single-output (MISO), single-input multiple-output (SIMO), single-input 
single-output (SISO). In the case of ozone concentrations’ forecasting we used MISO 
models. In the following subsections we review shortly the methods and tools we used 
for the generation of the three fuzzy models aiming the better prediction of ozone 
concentration. 

2.1. Takagi-Sugeno type fuzzy inference 

The mapping of inputs to outputs in a fuzzy system is determined by a set of “IF–
THEN” rules of form  

R,,i;BisYthenAisXIf ii
K1= ,     (4) 

where in case of a MISO system X = (x1, x2, …, xn) consists of a set of input 
variables, Y is the output variable, and R is the number of rules [32]. The fuzzy sets Ai = 

),,,( 21
i
n

ii AAA K  and Bi are the antecedent and consequent parts of the fuzzy rules.  

The Takagi–Sugeno type fuzzy system [29] also called “functional fuzzy system”, 
uses a function gi instead of a linguistic term  

RigisythenAisXIf iii ,,1; K= ,     (5) 

where the consequents gi=f(X). When the values gi are constants the system is called 
zero order Takagi-Sugeno system. The crisp output of the fuzzy system is determined 
by 
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where wi is the firing strength of the ith rule. Li Xin Wang [33] proved that any 
continuous function can be approximated by zero order Takagi-Sugeno systems. 
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Figure 1. Block diagram of functioning of a fuzzy rule based system 
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2.2.  ANFIS, Adaptive-Network-Fuzzy Inference System 

The Matlab’s ANFIS software generates a Takagi-Sugeno type fuzzy system from 
sample data using an adaptive neural network [6]. An adaptive network can be 
considered in some sense as the generalization of neural networks and fuzzy systems 
[6][7]. The typical structure of an adaptive network is shown in Figure 2. The network 
consists of nodes connected by directed edges. The typical adaptive network does not 
contain any feedback and it is organized in layers. The inputs and outputs of the 
adaptive network are denoted by xi and Oi

L. The number of layers is L. The number of 
nodes in the k-th layer is denoted by #(k). Figure 3. shows a simple example of an 
adaptive network. 

2.3.  LESFRI 

In many cases the dense rule base (e.g. Figure 4.) demanded by the classical 
compositional fuzzy inference techniques contains a large number of rules that increases 
exponentially with the number of input dimensions which fact also increases the 
computational complexity and the storage demand. 

This problem led to the development of fuzzy systems that are able to produce the 
output relaying only on a minimal set of rules. Thus it is not necessary to ensure a full 
coverage of the antecedent space by rules and a sparse rule base with low complexity 
can be applied (see Figure Hiba! A hivatkozási forrás nem található..) . 

The development of Fuzzy Rule Interpolation (FRI) based Inference Techniques 
(FRITs) gives new methodology on the field for practical applications due to the 
reduced complexity and storage space demand as well as due to its ability to handle 
cases when there are no rules that would describe the expected output for all the 
possible inputs. 

FRITs can be divided into two groups depending on whether they are producing the 
estimated conclusion directly or they are interpolating an intermediate rule first. 

Relevant members of the first group are among others the linear rule interpolation 
(KH method) [15] proposed by Kóczy and Hirota, which is the first developed one, the 
MACI (Tikk and Baranyi) [30], the FIVE [17] introduced by Kovács and Kóczy as well 
as the interpolation method developed by Kovács [16] that extended the fuzzy 
interpolation to the general metric spaces. 
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Figure 2. The layer structure of an adaptive network [19] 
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The methods belonging to the second group follow the concepts laid down by the 
generalized methodology (GM) defined by Baranyi et al. in [2]. Typical members of 
this group are e.g. the technique family proposed by Baranyi et al. in [2], the ST method 
suggested by Yan, Mizumoto and Qiao [31], the transformation based technique 
published by Chen and Ko [4] as well as the techniques LESFRI [11], FRIPOC [12] and 
VEIN [14] developed by Johanyák and Kovács. 

We chose LESFRI (LEast Squares based Fuzzy Rule Interpolation) [11] for the task 
of FRI based fuzzy inference. It was applied owing to the good practical experiences 
(e.g. [9]) in course of previous applications. In its first step LESFRI interpolates a new 
rule into the position of the observation. The task is solved in three phases. Firstly, the 
antecedent membership functions are calculated using the FEAT-LS (Fuzzy sEt 
interpolATion based on method of Least Squares) fuzzy set interpolation method. Next, 
one determines the position (reference points) of the consequent linguistic terms of the 
new rule using an adapted version of the Shepard interpolation [26]. Thirdly, the shapes 
of the consequent sets are calculated using the same set interpolation technique (FEAT-
LS) as in the first phase. 

LESFRI determines the conclusion in its second step using the single rule reasoning 
method SURE-LS (Single rUle REasoning based on the method of Least Squares)  that 
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Figure 3. Simple example for an adaptive network [19] 

 

Figure 4. Antecendent space of a dense rule base 
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calculates the necessary modifications of the new rule’s consequent sets based on the 
dissimilarities between the rule antecedent and observation sets.  

2.3.1. FEAT-LS 

The FEAT-LS method aims the determination of a new linguistic term in a fuzzy 
partition based on a supposed regularity between the known sets of the partition. First 
all linguistic terms are shifted horizontally into the interpolation point and next, one 
calculates the shape of the new set from the overlapped membership functions (Ai 
Figure 5 right side). 
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Figure 5. Original partition and interpolation point (xi) 

FEAT-LS targets the preservation of the characteristic shape type of the partition (e.g. 
trapezoidal on Figure 5) therefore it applies the method of the weighted least squares for 
the identification of the new set’s parameters. The weighting is related to the original 
distance between the sets and the interpolation point. The calculations are done α-cut 
wise using only the α-levels corresponding to the characteristic points of the partition’s 
default shape type. 

2.3.2. SURE-LS 

The revision method SURE-LS (Single rUle REasoning based on the method of Least 
Squares) is a special fuzzy inference technique that takes into consideration only one 
rule for the determination of the conclusion. The method is applicable when its 
antecedent sets are in the same position as the observation sets in each antecedent 
dimension and the heights (maximal membership value) of all involved fuzzy sets are 
the same. 
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SURE-LS calculates the conclusion by modifying the consequent sets of the rule. This 
modification is related to the similarity between the antecedent linguistic terms and the 
observation sets, which is measured independently in each input dimension by the 
means of their fuzzy distance (see Figure 6) and is aggregated by calculating the 
average distance. 

2.4. RBE-DSS 

In course of the rule base generation one can follow two different approaches. The 
first one divides the task in two separate steps, i.e. the structure definition and the 
parameter identification (e.g. Precup, Doboli and Preitl [24]; or Botzheim, Hámori and 
Kóczy [3], or Škrjanc, Blažič and Agamennoni [27]). 

The second approach works incrementally by simultaneously modifying the structure 
and the parameters, i.e. introducing or eventually eliminating rules and tuning the 
parameters of the membership functions (e.g. Johanyák and Kovács [10]). 

The Rule Base Extension with Default Set Shapes (RBE-DSS) [10] starts with an 
empty rule base and a set of training data points given in form of coherent input and 
output values. First the starting rule base is defined by determining the first two rules. 
They aim the description of the minimum and maximum output. One seeks the two 
extreme output values and a representative data point for each of them. If several data 
points correspond to an extreme value, one should select the one that is closer to an 
endpoint of the input domain. 

Next, a tuning algorithm starts aiming the identification of the parameters of the 
initial fuzzy sets. This algorithm uses an iterative approach adjusting each parameter in 
several steps separately. The system is evaluated in each iteration step for different 
parameter values against a training data set and the parameter values ensuring the best 
performance index are kept for the next iteration. 

If the decreasing velocity of the performance index of the system is too slow, i.e. it 
falls below a specified threshold after two consecutive iterations a new rule is generated. 
It is because the system tuning reached a local or global minimum of the performance 
index and the performance cannot ameliorate further by the applied parameter 
identification algorithm. The new rule introduces additional tuning possibilities.  

In order to create the new rule, one seeks for the calculated data point, which is the 
most differing one from its corresponding training point. The input and output values of 
this training point will be the reference points of the antecedent and consequent sets of 
the new rule. 

3. Experimental data and modeling results 

The air pollution data were collected in an urban site of Northern Portugal with traffic 
influences situated in Oporto [22]. The site is situated on the left edge of the Douro 
River, at an altitude of 90 m approximately. The study period was two weeks of July 
2004, where high O3 concentrations were measured and there was no missing data.  

In course of the experiments 10 characteristics were measured: the hourly average 
concentrations (in µg/m3) of carbon monoxide (CO), nitrogen oxides (NO, NO2 and 
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NOx) and O3; hourly averages of air temperature (T), solar radiation (RAD), relative 
humidity (RH) and wind speed (WS); the day of week (DW; the O3 behavior is different 
on weekdays and on weekend). All environmental and meteorological inputs 
corresponded to the same hour of the previous day. 

Based on the results published in [22] we took into consideration in course of the 
modeling only the most important factors that are T, RH, O3, NO2, NO. We formed two 
groups of the experimental data: one containing 259 measurements for system training 
purposes and one with 84 measurements for testing purposes. The test data were 
selected randomly from the original sample. 

The quality of a fuzzy model is measured using a performance index that aggregates 
the distances between the measured and calculated output points. One can choose from 
several possible performance indices available in the literature (e.g. in [25]). We used 
the root mean square of the error (RMSE) as performance index owing to its good 
comprehensibility and comparability to the range of the output linguistic variable. 

3.1. Modeling results using ANFIS and Takagi-Sugeno inference 

We created two fuzzy models using the ANFIS software. The first one (labeled as 
O3_Anfis_3S_Trimf_Corr.fis) was a zero ordered Takagi-Sugeno model having triangle 
shaped membership functions and three fuzzy sets in each dimension. We used the 
hybrid training algorithm with three epochs. Figure 7. and Figure 8. present the 
measured and calculated output points in case of the training respective test data sets.  

The second fuzzy system (labeled as O3_Anfis_5S_Trimf_Corr.fis) was a zero 
ordered Takagi-Sugeno model having triangle shaped membership functions and five 
fuzzy sets in each dimension. We used the hybrid training algorithm with five epochs. 
Figure 9. and Figure 10. present the measured and calculated output points in case of the 
train respective test data sets.  

The performance of the systems was measured using the root mean square of the error 
(RMSE). The numerical results are summarized in Table I. In case of both systems one 
can identify clearly a slightly overfitting of the models to the training data. 

 

 

Figure 7. Measured and calculated output points in case of the first fuzzy system and 
the training data set 
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Table 1. System performance (RMSE) in case of the training and testing data 

 Training Test Number of 
rules 

O3_Anfis_3S_Trimf__Corr.fis 10.5101 95.0337 243 
O3_Anfis_5S_Trimf_Corr.fis 4.4400 105.9679 3125 

O3_2R_Reduced_01_640_00705.fis 8.0007 14.8703 66 

 

 
Figure 8. Measured and calculated output points in case of the first fuzzy system and the 

testing data set 

 

Figure 9. Measured and calculated output points in case of the second fuzzy system 
and the training data set 

 

 
Figure 10. Measured and calculated output points in case of the second fuzzy system 

and the testing data set 
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3.2. Modeling results using RBE-DSS and LESFRI 

We also created a fuzzy model using the SFMI toolbox [8]. The selected model 
identification method was RBE-DSS and we used LESFRI for fuzzy inference in the 
resulting sparse rule base. The system performance (RMSE) in case of the training data 
set was between the results obtained in case of the two ANFIS created systems (see 
Table I). On the other hand, there was a much smaller overfitting, i.e. this system 
presented the best performance in case of the test data. Besides, the number of rules 
necessary for the description of the relation between the input and output variables was 
the smallest in the case of the third fuzzy system. Figure 11. and Figure 12. present the 
measured and calculated output points in case of the train respective test data sets. The 
numerical results are summarized in Table I. 
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Figure 11. Measured and calculated output points in case of the third fuzzy system 
and the training data set 

 

 

Figure 12. Measured and calculated output points in case of the third fuzzy system 
and the testing data set 

 

4. Conclusion 

This paper presented the application of two different fuzzy rule base generation 
approaches in order to model the relation between five environmental characteristics 
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and ground level ozone concentration. The aim of our research was the creation of fuzzy 
models that can be used in practice for the prediction of the ozone level.  

In our case the fuzzy system applying a sparse rule base and inference based on fuzzy 
rule interpolation ensured the best results taking into consideration both the training and 
testing data samples. This solution ensured slightly better performance than the 
previously applied approaches published e.g. in [22]. 
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